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Analysis of diffusion in metals based on 
non-equilibrium thermodynamics 

A. G. GUY 
Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, 
Florida 32901, USA 

A general form of the first Fick law for diffusion in single-phase metallic alloys is obtained by 
the methods of non-equilibrium thermodynamics. Because the vacancies are treated as an 
independent component, the reactions for the creation of vacancies are considered. The elec- 
trons are also treated as a component, and therefore an internally generated electric field 
appears in the generalized equation, in addition to the usual externally applied electric field. 
Similarly, two types of temperature gradient are considered; consequently, even in nominally 
"isothermal" diffusion a gradient in temperature may exist. The power of an analysis based on 
non-equilibrium thermodynamics is shown by the fact that the resulting equations have 
produced solutions to three previously unresolved problems. 

1. Introduct ion 
Although diffusion in metals has been the subject of 
scientific research for about a century, many problems 
remain unsolved because an adequate basic analysis 
has not been available. For example, the accurate 
experimental data of Smith [1] on steady-state inter- 
stitial diffusion of carbon in face-centred cubic iron 
have not previously been explained theoretically 
because the internal electric field has not been 
included in the analysis. Similarly, thermo-migration 
in this system [2] could not be predicted quantitatively 
because the electric field associated with the Seebeck 
effect had not previously been taken into account. An 
anomalously large Kirkendall shift in the substitutional 
Cu-7 at % Sn alloy [3] was an unsolved problem for 
more than 30 years because the vacancies had not been 
adequately treated. Companion articles [4, 5] present 
detailed solutions to these longstanding problems. 

The present application of non-equilibrium thermo- 
dynamics (NET) to diffusion in metals differs greatly 
from previous treatments, such as that of Adda and 
Philibert [6]. In particular: (i) the molecular reference 
frame plays a basic role; (ii) the vacanicies are an 
independent component; (iii) the electrons enter 
explicitly into the analysis; and (iv) the effects of 
internal electric fields and temperature gradients are 
considered even in the case of normal, "isothermal" 
diffusion. As a consequence of these differences, the 
present analysis permits the deduction of results not 
previously obtainable. 

From the viewpoint of materials science, NET 
makes three significant contributions to the analysis of 
diffusion in metals: the first is the basic concept of the 
Onsager relations; the other two are useful method- 
ological procedures. The Onsager relations lead, for 
example, to a quantitative analysis of thermo-migration 
[5], but they have much broader significance for the 
general development of a basic treatment of diffusion. 
The two procedures that are conveniently adapted 

188 

from NET (but which are also available elsewhere) 
are: (i) a rigorously correct formulation of the quasi- 
linear phenomenological equations [7, 8] including 
the effect of an internally-generated electrical poten- 
tial Vg, and (ii) methods for employing alternative 
reference frames for diffusion [9, 10]. Various reference 
planes must be employed in the solution of practical 
diffusion problems because the crystal lattice is the 
convenient choice for obtaining the basic diffusion 
coefficients (self-diffusion [11] and intrinsic-diffusion 
[4] coefficients), but the molecular (or number-fixed) 
reference frame greatly simplifies engineering-type cal- 
culations by permitting the use of a smaller number of 
mutual -coefficients. 

The term "quasi-linear" signifies that the 
phenomenological coefficients may be functions of the 
thermodynamic state variables (concentration, tem- 
perature and pressure). Consequently, the present 
analysis is quite general and applies to any process of 
diffusion in metals within the wide range of applica- 
bility of quasi-linear NET. (Exceptions are diffusion 
along linear or planar defects, or in solid metals 
appreciably affected by additional components intro- 
duced, for example, by nuclear irradiation.) In view of 
the complication caused by a net rate of creation of 
vacancies (Equation 6 below), no attempt will be made 
at this time to treat the second Fick law although a 
relatively simple example has been published pre- 
viously [4, 10]. Instead, the general form of the first 
Fick law for the one-dimensional case will be devel- 
oped from the phenomenological equations of NET 
and the Onsager relations. Although the internally- 
generated quantities, Vg and (dT/dx)g, are present in 
relatively simple cases of diffusion, the usual externally- 
applied electrical potential, Va, and temperature gradi- 
ent, (dT/dx)a, will be considered explicitly only in a 
later article [5] concerned with the effect of external 
driving forces on diffusion. 

Important quantities in the next section are th - 
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fluxes, J, and the two types of driving forces, dfi/dx 
and VT = dT/dx; here/~ is the electrochemical poten- 
tial, described below in connection with Equation 2. 
The fluxes are the flux of heat, Jq, the flux of electrons, 
Je, and the fluxes of atomic particles, J,, including the 
flux of vacancies, J~; therefore the index i takes on the 
values v, 1, 2 . . . .  n in an n-component alloy. The 
temperature gradient, VT, exists at a given point in the 
interior of a specimen, and is conveniently considered 
to be composed of two components, 

VT = V~T + VgT (1) 

VaT is attributable to the usual applied means of 
producing a temperature gradient (for example, exter- 
nal heat sources, iffduction heating, or electrical resist- 
ance heating) and is zero in the absence of such an 
external source. Vg Tis generated internally by redistri- 
bution of the particles of the system since each particle 
carries with it the enthalpy, hi. The electrochemical 
potential, ]7, of a particle having electrical charge q is 
composed of two parts, 

= # + q(K + Vp (2) 

where/~ is the chemical potential, given by 

p = #o + k T l n  ( f X )  (3) 

Here tt ° is a reference value, k is Boltzmann's constant, 
T is absolute temperature, f is a thermodynamic 
activity coefficient and for the atomic particles Xis the 
mole fraction: 

Xi - ci (4a) 

Eci 
i = v , 1 . . .  

where c i is the number of particles per unit volume. 
For electrons Xis conveniently chosen to be the particle 
ratio, 

Xe = Ce (4b) 

i = v , l . . .  

of electron to atomic particles. The division of the 
electrical potential into two components is analogous 
to the division of VT, (Equation 1). V~ is caused by an 
externally applied potential, VA ; Vg is generated intern- 
ally as a result of the redistribuition of particles (elec- 
trons, atoms, and vacancies). 

Experimental observations of several kinds indicate 
the existence of a relationship between the relative 
sizes of two interdiffusing atomic species and the behav- 
iour of the vacancies [12]. A quantitative evaluation of 
this relationship has been given in a companion article 
(Section 5 of [4]), and for this purpose the present 
analysis must take account, not only of differences in 
atomic size, but of change in size with change in 
composition. This goal is achieved quite easily [10] by 
use of the variable partial molar volume, ~,  of each 
atomic component. Not  only substitutional atoms, 
but also interstitial atoms and vacancies have exper- 
imentally measurable values of ~. No necessity for a 
value of ~ ,  the partial molar volume of the elec- 
trons, arises in the analyses being considered. 

2. Fo rmu la t i on  of  diffusion and of 
creation reactions by use of 
non-equilibrium thermodynamics 

The phenomena associated with the Kirkendall effect 
show that vacancies are being created and destroyed 
during the coarse of isothermal interdiffusion of two 
metals (Metals 1 and 2). Consequently, the formalism 
of non-equilibrium thermodynamics requires that the 
rate of entropy production, ~, be the following sum 
[7], 

- T J~ dx T \ d x J r  i = e , v , l . . .  

r 

1 ~= Jx-A~ 

(5) 

of contributions from diffusion fluxes, Ji, and from 
rates of production, Jk, of the components (including 
the vacancies, component v) by the total of r chemical 
reactions that occur in the system. Jq is the heat flux 
and Ak is the chemical affinity of reaction k. The 
reader can find a full discussion of this equation in 
de Groot and Mazur [7]. 

For the purpose of this paper, Equation 5 is import- 
ant for two reasons. First, because of the Curie prin- 
ciple [13] the fluxes Ji are functions of the forces dT/dx 
and (dfii/dx)r but not of the chemical affinities, Aa,. 
Consequently the quasi-linear equations (Equations 
10 to 12 below) have their usual form. Second, the 
change in concentration with time, c~ci/c~t, is deter- 
mined both by diffusion and by the chemical reac- 
tions. With a suitable choice of coordinate system, the 
quantitative relation can be represented as 

i + (6) 
,)-7 ~ ~ )  _ ,i~ m = e , v . l . . .  k =  1 

where Dim is an appropriate diffusion coefficient and ri~ 
is the rate of production of component i as a result of 
reaction k and I7" is the total (average) molar volume. 
The significance of Equation 6 for the behaviour of 
vacancies depends on the character of the reactions 
that occur under given conditions of diffusion. We 
now briefly consider typical reactions. 

The creation of vacancies (or their destruction by 
the reverse reaction) can occur by many different reac- 
tions, but the following three types are of major 
importance for typical cases of interdiffusion: 

1. Creation at a jog in a dislocation line by the 
reaction 

~ V +  c~ or 0 ~ V (7) 

in which the jog moves by one atom distance as a 
result of the formation of the vacancy. The crystalline 
matrix c~, within which the vacancy is created, is essen- 
tially unchanged in this case and therefore cancels on 
the two sides of the equation. (See Equation 9 for a 
different case.) 

2. Creation from porosity (a vacancy disk or tetra- 
hedron) in the specimen by the reaction 

F~ ~ v + v._, (8) 

where V~ represents a region of porosity containing n 
vacancies. 

3. Creation during structural changes that occur in 
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the matrix as a result of the diffusion process 

~X m ~ V -q- 5 '  (9) 

where a m represents the initial metastable matrix and 
5' represents the final matrix after the structural 
change that resulted in the production of the vacancy. 
For example, if an edge dislocation is in a region of 
tensile stress (condition am), this configuration of 
matrix can reduce its strain energy (to condition 5') if 
the interleaved plane increases its area by producing a 
vacancy. 

We will now consider some characteristics of each 
of these three reactions. The occurrence of the reaction 
of Equation 8 is indicated by the presence of porosity 
in the half of the diffusion specimen into which the 
vacancies flow. The velocity, co, of a conventional 
reference system must then include a contribution 
dependent on the local rate of  formation of vacancies. 
For  simplicity, the reaction of Equation 8 is assumed 
to be negligible in the cases of diffusion covered by the 
present analysis. 

The reaction of Equation 7 can be pictured as 
tending to maintain the vacancies at essentially their 
equilibrium concentration. It must occur in all cases of  
diffusion in which the atomic flux of Metal 1 is not 
equal and opposite to the flux of Metal 2. The driving 
force for this reaction is slight supersaturation of the 
vacancies. If the supersaturation of the vacancies is 
sufficiently great, then the mode of reaction changes to 
that of (the reverse of) Equation 8 or 9. In the case of  
the reaction of  Equation 9, for example, the vacancy 
supersaturation supplies sufficient energy that the 
matrix changes from condition 5' to a higher-energy 
s t a t e ,  a m . 

Although the reaction of Equation 9 (like that of 
Equations 7 or 8) can be driven by supersaturation of 
vacancies, a more interesting alternative for the 
present purpose is the case when it is driven by the 
extra energy of the metastable matrix, am. As an 
example of diffusion behaviour that can lead to a 
reaction of  this type, consider an element of  Volume 
bounded by two imaginary Kirkendall interfaces per- 
pendicular to the direction of  diffusion. Let a certain 
net number nl or Metal 1 atoms be added to this 
volume element by diffusion and a net number n2 of 
Metal 2 atoms be removed. The difference between nl 
and n 2 is the number of vacancies that must be 
destroyed (or created) by the reaction of Equation 7 as 
discussed in the previous paragraph. The resulting 
composition has changed, however, since Metal 1 was 
added and Metal 2 removed. Consequently the alloy 
in this volume element may be sufficiently unstable (am 
in Equation 9) that it undergoes a structural change to 
condition a' with the creation of a vacancy. 

One of the many possible causes of  an unstable 
condition is a difference in atomic volume between 
Metals 1 and 2. For  example, if the volume of an atom 
of Metal 1 is 25% less than the average atomic volume 
of the solid solution, and the volume of an atom of 
Metal 2 is 25% greater, then the replacement of two 
atoms of Metal 2 by two atoms of Metal 1 leaves a 
"volume deficit" in this region of the matrix equal to 
the average atomic volume. The volume deficit causes 
two effects: (i) it increases the elastic energy of the 
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matrix and may lead to a structural change that 
includes the local production of  one vacancy, and (ii) 
it creates a tensile stress which decreases the chemical 
potential of the vacancies. Consequently, vacancies 
tend to flow toward this region in the lattice. Thus, 
differences in atomic volume ( ~  ~ G)  lead to an 
additional flux of vacancies, J~, that is usefully dis- 
tinguished from the usual flux, Jv e, that results from 
the inequality of atomic fluxes (Jr ¢ J~) under equi- 
librium conditions. The precise meanings of the super- 
scripts (s) and (e) are described in a companion paper 
[4]. 

The main topic of the present article is a generally 
valid formulation of the quasi-linear phenomenological 
equations for diffusion in metals. Equation 5 can serve 
as the starting place for such a formulation. This 
equation also explains the following paradox. If  
vacancies are to be considered as an independent 
component in the phenomenological equations, they 
must be capable of  undergoing chemical reactions 
(Equations 7 to 9); yet these reactions need not 
be considered explicitly in the phenomenological 
equations. 

3. Quasi-linear phenomenological 
equations 

The basic kinetic coefficients (self-diffusion, tracer- 
diffusion and intrinsic diffusion) are measured relative 
to the lattice reference system (a system of  coordinates 
fixed in the crystal lattice of the metal). For  this reason 
the lattice reference system is also a convenient choice 
for the general pheonomenological equations based 
on Equation 5. The standard procedure [14] then leads 
to the formulation 

j , =  - 
j=v,i... T dx  T 2 dx 

(10) 

@ {M~j dfg~ M~, d~e M~q d T  
y o =  - j=v,l \ T dx /I r T dx T 2 dx 

d'q = Yq - 

l l)  

Here Ji is the flux of an atomic component (or the 
vacancies), Je is the flux of electrons, Jq is the actual 
flux of heat and Jq (the reduced heat flux) is a useful 
quantity that is appropriate for use with (d#/dx)r (to 
be evaluated at constant temperature) [7]. The various 
M coefficients are concentration-dependent quantities 
closely related to the theoretic coefficients, which in 
turn are related to the experimentally determined 
coefficients (D values, electrical conductivity and ther- 
mal conductivity). 

Without loss in generality, Equations 10 to 12 can 
be converted into a form more useful for application 
to diffusion in metallic systems. For  simplicity the case 
of a binary solid solution (n = 2) will be considered 
here, and Equations 27 to 31 will be obtained. The 

( J ~ h , )  - J o h o  
i~v,l... 

dx 
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generalization to multicomponent solid solutions can 
be made in an analogous manner. (The case of dif- 
fusion in ternary solid solutions is particularly 
interesting because of the ambiguous character of the 
mutual coefficients, D~, employed in practical calcu- 
lations. The resolution of this problem is the subject of 
a subsequent article [15].) 

The mole fraction, X,,, and the chemical potential, 
p~, of the vacancies have some unusual characteristics 
compared to the corresponding quantities for the 
atomic components. The sum 

X l  + X2 4- Xv = I (13) 

is so little affected by the vacancy concentration 
(about 10 -4) that within experimental error, 

X~ = (1 - X 2 )  (14) 

Also, beca:ase the diffusion coefficient for vacancies is 
larger by about l04 than D~ or D2, the concentration 
gradient dJ~;/dx is negligibly small [I 1] in the relation 
obtained fi'om Equation 5, and therefore 

dXi dX2 
= ( 1 5 )  

dx dx 

definition of chemical potential In view o£ the 
(Equation 3), 

d#, k T dX~ 
- q ~ , - - - -  ( 1 6 )  

dx X, dx 

where ~b~ is the correction factor for thermodynamic 
nonideality of the solid solution; 

d(ln f )  
~b, = 1 + - -  (17) 

d(ln X~) 

From the Gibbs-Duhem equation, 

d#j )(2 dp2 
- ( 1 8 )  

dx X~ dx 

In the case of vacancies, Equations 3 and 16 must be 
modified to take account of the change in the equilib- 
rium concentration of vacancies, Xv ~, with change in 
composition of the alloy. This can be done by writing 
Equation 3 in terms of both X~ and X,. to give 

l*v = /*°v + k T  ln f~X~ + g(X2) (19) 

where g(X2) represents an appropriate function of)(2. 
If X 2 changes, /~ will remain constant provided Z~ 
adjusts to maintain its equilibrium value, X y. Conse- 
quently, Equation 19 gives the relation 

d#~dx - 0 = 0 + (kTln f~X~) + Ux [g(&)] 

(20) 

and therefore 

Substitution of this expression in Equation 19 gives 
the following analogue of Equation 16; 

d/~v kT  dX~ 
= 0 v - - - -  (22) 

dx X~ dx 

where 

g(X2) = - k T l n  f~X~ (21) 

(~l_k dS, q ~ )  (~vk dX: 
Jt = -- Mll \ X~ dx + 0 - MJv \ Xv dx 

/4,2~ dX2 rE ) (~k dx: • 12 = 0 -- M22~-X22 ~x q - M > \ X ,  dx 

( dPlkdX' q ¢ ) - - M  (d)zkdX2 q?E) ( ~ k d X :  
& = --M~''\X, dx ~2kX ~ -dx - M ~  -~vv dx 

X~ = Xv - Xv ~ (23) 

This represents the amount by which the vacancy 
concentration Xv is supersaturated above the equilib- 
rium value, X e. Negative values of X s correspond to 
undersaturation of vacancies. 

The following argument based on the vacancy 
mechanism can be used to show that 

M12 = 0 and M2i = 0 (24) 

The existence of a flux of Metal 1, for example, 
depends on the presence of a vacancy next to an atom 
of Metal 1. But both X2 and dX2/dx are determined by 
the corresponding values for Metal 1. Consequently 
the distribution of Metal 2 can have no separate effect 
on the distribution of vacancies, and therefore M12 iS 
zero. Although the relations in Equation 24 appear to 
be equivalent to an Onsager relation, ML2 = Mv~, no 
Onsager relation is expected in this case [16] because the 
driving forces in question are related by Equation 18. 
Similarly, even though d/4/dx is only indirectly related 
to dlq/dx and dpSdx, no corresponding Onsager 
relations exist and therefore 

Mv, # Miv and My2 # M2v (25) 

A linear relation exists among the three fluxes [I 7], so 
that 

= - -  + ( 2 6 )  

where F,, is a correlation factor. 
When the values given by Equations 16, 22 and 24 

are substituted in Equations 10 to 12, the result for a 
binary solid solution is given by Equations 27 to 31. 
At first sight these equations may appear to be 
unnecessarily complex for adequate treatment of typi- 
cal diffusion phenomena in metals, but in fact the 
entire array is needed for quantitative treatment of 
thermo-migration in a binary substitutional alloy. The 
equation for J~, the flux of electrons, plays an import- 
ant role even when no external field is applied since the 
internally-generated field (see Equation 2) has a major 
influence in the presence of a temperature gradient 
and cannot be neglected even in typical processes of 
isothermal diffusion. 

In companion articles on a particular topic, the 
special (usually simpler) form of Equations 27 to 3l 
will be discussed. In the case of isothermal self-dif- 
fusion [1 l], for example, no electrical or thermal terms 
need to be considered. 

q~) (~k d)(~ e~_) Mlq dT 
- M,~ ~-x  + - -1,2 dx ( 2 7 )  

~_) ( ~ k d X  e e ~ ) M 2 a d T  (28) 
q _ M2o\X ~ ~x + - -  _ T--5-d-- £ 

((Gk dX~ + Mvq dT (29) 
q~_)_ M~\c~X.7~ ~ x e_~) T2 dx . 
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( +l k dXi 

(c~1 k dX I 
Jq = -- n q l k ~  I ~ x  

qT E) - Me2 \ X2 dx 

q - M q 2 \ X  2 dx 

q - Mev \ X~ dx k, Xe dx + T 2 dx (30) 

4. Discussion 
Because metals are only one of the materials of interest 
in materials science, an important question is the fol- 
lowing: to what extent is the present analysis of dif- 
fusion applicable to other types of material? In view of 
the generality of thermodynamics, the basic approach 
employed here has wide applicability. The specific 
features of the analysis for a given material, however, 
begin to appear at the first step in the treatment; 
namely, the choice of the independent components. In 
the case of semiconductors, for example, hales may be 
important as well as electrons, and other point defects 
may operate in addition to vacancies. Another specific 
feature of practical importance is the adequate 
representation of the chemical potential of the elec- 
tronic carriers. Their activity coefficient can often be 
considered to be constant in metals, but it varies greatly 
with carrier concentration in semiconductors. In sum- 
mary, although a treatment valid for a different 
material can be developed along similar lines, the final 
equations will differ appreciably from those given here 
for metals. 
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